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EXECUTIVE SUMMARY

OBJECTIVE

This report proposes a discrete-time model of an Asynchronous Transfer Mode (ATM) statistical
multiplexer subject to heterogeneous groups of on-off traffic sources with correlated burst periods.

NRaD engineers have formulated algorithms to compute both the exact transient and steady-state
cell-loss probabilities of the multiplexer.

METHOD

The complexity of the algorithms is exponential to the number of traffic types multiplexed; there-
fore, it may be impractical to use them to address realistic ATM design problems. For this reason,
NRaD engineers formulated and analyzed an approximation model of the multiplexer subject on-off
traffic sources with random burst periods. They developed an algorithm to calculate the exact cell-
loss probability of the approximation multiplexer model. Unfortunately, the time complexity of the
algorithm is also exponential to the number of traffic types multiplexed. To circumvent this difficulty,

the engineers formulated an efficient approximation procedure to estimate the cell-loss probability of
the approximation multiplexer model.

CONCLUSION

NRaD engineers developed algorithms to compute both multiplexer models’ cell-loss probabilities.
The algorithms’ results have been compared to simulation outputs and they have showed perfect
agreement (within noise level). The algorithms will be invaluable for resolving basic ATM design
issues such as buffer dimensioning, maximal loading, and admission control.
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1. BACKGROUND

Asynchronous Transfer Mode (ATM) networks will dominate future global telecommunication
industries. These networks will make many telecommunication services (e.g., video conferencing and
high-speed data) economical and, in turn, will bring fundamental changes to the way that people com-
municate and travel. Despite the expected prominence of ATM, many basic ATM design issues, such
as buffer dimensioning and routing, still have not been addressed. The resolution of these issues will
require a thorough understanding of the dynamic behavior of the ATM multiplexer. The analysis of
the cell loss behavior of an ATM multiplexer is the focus of this report.

2. MATHEMATICAL MODEL OF THE ATM MULTIPLEXER

One classical approach to understanding a system’s behavior is to design a mathematical model that
captures the salient characteristics of the system and then analyze the model. This approach will be
used in this report.

Statistical multiplexing is a means of sharing a communication channel by many traffic sources
simultaneously. A statistical multiplexer consists of a channel, a buffer, and a set of traffic sources
sharing the channel. Traffic is generated by the sources and removed by the channel. Whenever the
instantaneous aggregate traffic rate of the traffic sources is below the channel capacity, the amount of
the traffic in the buffer does not accumulate; however, when the total-traffic rate exceeds the capacity
of the channel, the excess traffic will be stored in the buffer; and when the buffer is full, excess traffic
will be lost.

The most difficult task in developing an accurate ATM statistical multiplexer model is the charac-
terization of a traffic source. As one may expect, the traffic generation behavior of a traffic source is
stochastic and differs depending on the traffic type. The problem is to develop a general traffic model
that may be used to describe an arbitrary traffic source. The graph (figure 1) depicting the traffic gen-
eration rate of a traffic source as a function of time yields insight for the formulation of a satisfactory
traffic-source model. Common to all bursty traffic sources, there are burst periods during which a
traffic source would generate traffic close to some peak rate, P, and there are idle periods during
which the source would generate close to nothing. While it is impossible to completely describe all
the particular characteristics of a traffic source, there are three fundamental characteristics that are
considered to be the most important in determining the cell loss behavior at a statistical multiplexer:
the peak traffic rate, the mean traffic rate, and the expected burst period. It is imperative that a traffic
source model would account for these three characteristics.

An arbitrary traffic source that has a peak traffic rate, P, a mean traffic rate, m, and an expected
burst period, E(BP), may be approximated by an on-off traffic source model that is described as fol-
lows:

An on-off traffic source of the i-th type alternates between on and off periods. The duration of an
on period, measured in terms of integral multiple of a time slot of duration 7, is geometrically distrib-
uted with a parameter of o; the duration of an off period is geometrically distributed with a parameter
of B, where 0 < ;, B; < 1. During its on periods, the source generates P; cells per time slot and dur-
ing its off periods, generates nothing. A schematic of a traffic source of the i-th type 1s shown in fig-
ure 2.
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Figure 1. Traffic generation rate of a traffic source.
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Figure 2. Traffic generation rate of an i-th type on-off source.

Notice that, given an arbitrary traffic source with peak rate, P, mean rate, m, and expected burst
period E(BP), one can construct an on-off traffic source approximation that has the same three funda-
mental characteristics. The parameters P;, o;, and ; of the approximating on-off source are uniquely
determined according to the following formulae:

L4 P[=P

e 11
%=1-gzp

P

- E(BP)(%—I)

Because of its extreme nature (generating at peak rate during its on period and nothing during its
off periods), an on-off traffic source with fundamental characteristics P, m, and E(BP) is likely to be
more bursty than most traffic sources with the same characteristics; therefore, it would effect a higher
cell loss at a multiplexer. This is particularly desirable for modeling purposes.




3. TRANSIENT CELL-LOSS PROBABILITY

A traffic type typically has two requirements: delay and loss. The delay requirement of a traffic
type is expected to be met by an ATM network. The loss requirement is a bigger concern for the net-
work. For this reason, the loss characteristics are the most important performance measure of an ATM
multiplexer. The focus of this work is to formulate an efficient procedure that computes the transient,
as well as steady-state, cell-loss probability of the multiplexer. A transient solution is desirable since
it is expected that the behavior of an ATM network is highly dynamic and a steady-state solution
alone may not provide adequate information for the control and design of an ATM network.

4. LITERATURE REVIEW

Statistical multiplexing, an efficient and flexible means of sharing a communication channel by
many traffic sources simultaneously, is so critical to an ATM network that the term asynchronous
transfer mode is just an alias for statistical multiplexing. Because a thorough understanding of the
effect of statistically multiplexing diverse traffic sources onto a channel is required to address many
basic ATM design problems, numerous attempts were made to analyze the multiplexer’s behavior.
The continuous-time analog of the on-off model developed in this report was first proposed in Anick,
Mitra, and Sondhi (1982). The main motivation of that pioneering work was to evaluate the steady-
state cell loss behavior of a statistical multiplexer subject to only one type of traffic stream. A closed-
form expression for the steady-state distribution of the buffer content was derived assuming that the
buffer size of the multiplexer is infinite. Although the analysis is elegant, it cannot be used in the con-
trol and design of an ATM network since only one traffic type was allowed in that model, whereas in
arealistic ATM network, heterogeneous traffic types are expected.

In Kosten (1984), the on-off traffic model is extended to include heterogeneous types of on-off
traffic sources. An approximation expression to estimate the steady-state probability of the buffer
content exceeding a very large value is derived under the assumption that the buffer size is infinite.
The validity of his approximation had never been extensively verified by simulation studies.

Kobayashi and Ren (1992) investigated a multiplexer subject to the same assumptions in Kosten
(1984), but they focused on obtaining the transient probability of the buffer content exceeding a cer-
tain value. Unfortunately, they gave only a formulation, rather than an explicit solution of the prob-
lem. Shum (1994) derived an approximation expression for transient probability of the buffer content
exceeding a large value; however, the accuracy of his expression is not uniformly satisfactory. To
obtain an exact solution of the distribution of buffer content exceeding a certain value for the multi-
plexer model with an infinite size buffer requires one to solve a set of partial differential equations
with very specialized boundary conditions; unfortunately, not even a satisfactory numerical procedure
exists to solve these equations. A model with a finite buffer is even less tractable.

Currently, a satisfactory procedure that estimates the cell loss rate effected by heterogeneous on-off
traffic sources at a finite-buffer statistical multiplexer does not exist, and developing such a procedure
is the main motivation for this report.




5. ANALYSIS

We define the following variables:

7 the duration of a time slot
M the number of different traffic types
N; the number of traffic sources of the i-th type i=1, ..., M

R; the number of cells generated by an i-th type traffic source in a time slot during the source’s
on periods

B the maximum number of cells that may be buffered at the multiplexer

C the number of cells that may be transmitted by the output link of the multiplexer per time
slot; We assume 1 < C

We make the following simplifying assumptions:

a.

An on period of a traffic source the i-th type lasts X; time slots, where Pr(X; = j) = o,/ 1(1 - o)
and 1< jandO<aq; <1

An off period of a traffic source the i-th type lasts ¥; time slots, where Pr(Y;=)) =611 -B)
and 1< jand0<f; < 1

The number of cells at the buffer at a time k+1 is computed as max(min(i +R - J — C, B),0),
where i is the number of cells in the buffer at time k; J is the state of the traffic sources at the
start of time k

M
(Stationary Condition) Z RN,
i=1

1'+1

M
> NR; > C
i=1

Assumptions a. and b. state that the on and off periods of an i-th type traffic source are geometri-
cally distributed with parameters o; and f;, respectively. Assumption c. states that the number of cells
at the beginning of the (k+1)-th time slot is equal to i, the number of cells at the buffer at the begin-
ning of the k-th time slot, plus the number of cells generated during the k-th slot, R - J, subtract the

number of cells removed by the channel during the time slot, C; however, the number of cells in the

buffer will never exceed the buffer size B and it will never drop below 0. Assumption d. states that

the overall mean aggregate traffic rate of all sources is less than the capacity; this allows the number
of cells at the multiplexer to have a steady-state distribution. Assumption e. ensures that we do not

M
have a trivial problem, as z RN; = Cimplies that cell loss would never occur.

i=1

We denote:

L the number of cells in the buffer at the beginning of the k-th time slot

L=, 1_1)moo L; the number of cells in the buffer at the beginning of a time slot

Jix the number of the i-th type traffic sources that are on at the beginning of k-th time slot




* SMN) = {(i1jasndp) 10 < ji S Nii = 1,2,..., M)
* SBMN) ={G.)j)10<i<B,j€ESMN)

o Ji = Updopdip) € SIM,N)

* Prifiy; = Ly 1y = 1) 0 < k for i, and [, € S(M, N) the probability that J, ,, = . |,
given that J, = [,

* (Ly=J.Jy =Dthejointeventof L, = jand J, = L

* Prilyyy =j.Jyy =11 L, =i,J, = m) = PXj,1 | i,m) the probability that the state at time
k+1is (j, ), given that the state at time k is (i, m)

The transition probability from the state (L, = i,J, = m) at time k to the state
Lysq = Jodyyqg = Dattime k+1 is

x=1

M
PG, | i,m) = E{ j=max(min(i + > R,m,~C,B),0) } PrlJ =11J, =ml, 1)
k+1 k

where £(A) is the indicator function of the event A, i.e.,

1 Aistrue
E{A} =

0 A is not true
The transition probability for the state of the traffic sources from time k to k+1,
Pr{J;,; = L | J, = m}, is derived as follows:

For now, we only consider the change in the number of the on sources of the h-th type. Suppose at
time k, the number of on sources of the h-th type is i. Let 0, denote the state of a traffic source of
the h-type at time k; that is, 6, is either on or off. We conclude that

Pr(oy.. = on lo,, = on) = a,,
PrOppsr = on oy, = of) =1 -8,

Pr(0y,41 = off | O = off) = B,.

Let m be the number of the i on sources that stay on at time k+1; hence, m < i and i — m sources
turn off at time k+1. Let  be the number of the Nj, — i off sources that turn on at time k+1 , where ] <
Np,—i. We conclude that N, — i — [ of the on sources at time k stay off at time k+1. Since the traffic
sources turn on and off independently, we obtain

Pf(Jh,k+1 =j 1y =10=
Y ST

m=1 {l:l=m—j}

where (;) = }ny*ix)!if y < xand (;) = 0 otherwise.

When N is large, it is preferable to use Stirling’s formula to approximate N! by NNe=N/2zN.




We conclude that since the traffic sources turn on and off independent of each other,

M
PriJyy =LV Ly =m) = [ [Pr(lypy, = 1Ty = m)). (3)

, i=1
If the 2-tuple (i, J) € S(B,M,N) were used to denote as a state of the multiplexer, then the set of

states S(B,M,N) forms a Markov chain. The transition probability from state (i, m) at time k to state
(. D at time k+1 for the Markov chain is

Prilysy = jipy = L1 Ly =iy = m) = 5[[] = max(min(i + R - ﬂ”‘C,B),O)”Pr{l;Hl =I1J, = ..”l] )

The state evolution equation of the multiplexer is

Prliw) = jidisi =D = > PAlue; = jiday = D1 Ly = iidy = mPrly = idy = m), (O)
(imESBMN)

where L and J denote the number of cells in the buffer and the state of the traffic sources in steady
State, respectively.

Given that the multiplexer is at state (i, m) € S(B, M, N) at time 0, the probability that the state of the
multiplexer at time & is (j, ), that s, the transient probability that the multiplexer is at (, /), may be
recursively determined according to (4), if one sets PH(L, = i,J, = m) = 1 and Pr(L, = x,J, = y) =0

M
for (x,y) = (i, m). The time complexity of obtaining Pr(L, = j,J, = D is O(k(BnN,»)Z).

The probability that the state of the multiplexer is at (j, ) at a random epoch sufficiently far away
from time O, that is, the steady-state probability that the multiplexer is at (j, 1), satisfies the following
fixed-point equation:

PriL=jJ=D= > Pil=jJ=11L=iJ=mPrL =iJ=m), (6)
(. mESBMN)

where L and J denote the number of cells in the buffer and the state of the traffic sources in steady
state, respectively. Although the probability Pr(L = j,J = I) may be computed recursively using equa-
tion (4) by letting k — «, doing so would take a prohibitively large number of i 1terat10ns The steady-
state probabilities may be obtained via the following iterative procedure:

k=0

for((i,j) € S(B M N))

{

1

ky o .
(P )(I,L) IS(BM,N)I ’

};

for((i j) € S(B .M N))




@) H=0

While (| p**'; s - p* jy| =8 foreach (i,j) € S(B M N))
{
k =k+1;

for (i,j) € SBMN))

{

pick any €, such that 0 < ¢, < 1;

k k-1
Pap=U0-&p""¢pte

M
Z é{i = max{min (€ + Rm - C,B)O)}HPr(Ji = j; l J; = m,-)pk'l(g{,,_);
(6m) € S(BMN)

i=]

}s

— k .
§= 2 Py
(i J) e SBMN)

for ((i ,j) € S(BMN)Y)

The procedure terminates whenever it has found a consistent set of p, S that satisfy equation (6).

1
M
The condition Z R,N,-—l—l——a;l—< C ensures that the Markov chain is ergodic. The ergodicity in

= TatTep

!

turn ensures that a unique steady-state distribution solution exists. This implies that, if the procedure
converges, it would converge to a unique solution. In general, existence of a solution does not imply
convergence. Our computational experiences suggest that the procedure always converges, however.




M M
The space complexity of the procedure is O(B H N)); the time complexity is O(B? n N?).

i=1 i=1

Once that the state probability distribution of the multiplexer is determined, the cell loss rate at the
multiplexer may be found as follows:

We define the following variables:

* NLL = i,J = D) the number of cells that are lost at the end of a time slot, given that, at the start
of the time slot, the number of cells in the buffer is i and the state of the traffic sources is !

* NA(L = i,J = D the number of cells that arrive during a time slot k, given that, at the start of the
time slot, the number of cells in the buffer is i and the state of the traffic sources is /

* LR(L = i,J = ]) the cell loss rate during a time slot, given that the number of cells in the buffer
is 1 at the start of k and the state of the traffic sources is |

Note the folloWing:

M
NLL=iJ=1]= max(z Ri~(B-i + ©),0) NG
j=1
M
NAL =i,/ =D = >Ry, (8)
j=1
NLLL = i,J = I
LR(L:i’l=D=NAEL=;3=i) ®)

The cell-loss rate during a time slot is:

IRL = i,J = Pl = i,J = j). (10)
G)ESBMN)
Equations (7) to (10) outline the steps to compute the steady-state cell-loss probability of the multi-
plexer once the steady-state probability of the multiplexer at each state (i, m) € S(B, M, N) is found.
Equations analogous to (7) to (10) may be developed to compute the transient cell-loss probability of
the multiplexer once the transient-state probability of the multiplexer at each state (i, m) € S(B, M, N) is
known.

6. NUMERICAL EXAMPLES

We conducted simulation studies for two arbitrarily selected ATM multiplexing scenarios to evalu-
ate the steady-state cell-loss probabilities projected by the algorithm (see tables 1 and 2). The results
from the simulation studies and the algorithm are as follows:

6.1 EXAMPLE #1

B=2
C=40
M=2

Ny=2a;=0281=0.3R; =20
No=1a,=0882=07R, =10

We denote P, as the steady-state probability that the buffer content of the multiplexer at the start
of a time slot is i and that the state of the traffic sources is Jj and « as the steady-state cell-loss proba-
simulation result — analysis result

bility. Relative error is defined as 100 x - -
simulation result




Table 1. ATM multiplexing algorithm example #1.

Analysis Simulation Relative Error (%)

P(0,(0,0) 0.09659475 0.09248844 —4.44
Po,0,1)) 0.10355416 0.11048619 +6.07
Po,1,0) 0.19054385 0.18997625 ~0.30
Po.a.1) 0.26508439 0.26171729 159
Po,(2,0)) 0.08605149 0.08351455 —2.91
Po,@21) 0.12645847 0.12860892 +1.67
P(1,(0,0)) 0.00000004 0.00000000 N/A

P,(0,1)) 0.00000002 0.00000000 N/A

P,1,0)) 0.00000002 0.00000000 N/A

P ,,1)) 0.00000001 0.00000000 N/A

P20y 0.00000000 0.00000000 N/A

P,2,1) 0.00000000 0.00000000 N/A

P2,(0,0) 0.01720326 0.01587302 -8.38
P.0,1)) 0.06709292 0.07074116 +5.16
Pe,(1;0) 0.00860163 0.00824897 _4.08
Ple,1,1) 0.03354646 0.03374578 10.59
P,(2,0) 0.00107521 0.00024997 -330.00
Pee1) 0.00419331 0.00424947 133
€ 0.042713551 0.043483995 +1.77

6.2 EXAMPLE #2
B =20
C=27
M=2

Ny=2a;=02B81=05R; =20
N2=3a2=0.1ﬁ2=0.8R2=]5

We denote P, as the steady-state probability that the buffer content of the multiplexer at the start of
a time slot is i and e as the steady-state cell-loss probability. Relative error is defined as

simulation result — analysis result
100 x )

simulation result




Table 2. ATM multiplexing algorithm example #2.

Analysis Simulation Relative Error (%)
Py 0.42601402 0.425331493 -0.16
P4 0.05139291 0.050258995 ~2.26
Py 0.00656487 0.006659867 +1.43
P 0.01255233 0.012419752 -1.07
Py 0.00684444 0.006959861 +1.66
Ps 0.00162335 0.001459971 -11.19
Ps 0.01994044 0.021119578 +5.58
Py 0.00242924 0.002219956 -9.43
Py 0.11457789 0.113537729 -0.92
Py 0.01794887 0.017779644 -0.95
Pio 0.00251679 0.002519950 +0.13
Py4 0.00524285 0.005039899 —4.03
Pqo 0.00245564 0.002339953 -4.94
Pis 0.09279831 0.093138137 +0.36
P4 0.00826216 0.008079838 —2.26
Pys 0.00100513 0.000919982 —9.26
Pig 0.02671924 0.027779444 +3.82
Ps7 0.00450124 0.004579908 +1.72
Pig 0.00161537 0.001699966 +4.98
P4g 0.00276439 0.002599948 -6.32
Poo 0.19223051 0.193556129 +0.68
€ 0.080323504 0.082366904 +2.48

7. CONCLUSION

Both simulation studies affirm the validity of this analysis. The main drawback of the procedure is
that both its time and space complexities are exponential in M; therefore, it is impractical for evaluat-
ing multiplexers with interesting values of M, N;, and B. To circumvent this difficulty, we propose an
approximation multiplexer model to evaluate scenarios in which N;’s and M are large.

8. AN ALTERNATE MULTIPLEXER MODEL

In the previous section, we analyzed an ATM statistical multiplexer subject to heterogeneous
groups of on-off traffic sources. The durations of the on and off periods of a traffic source are geo-
metrically distributed with parameters a and §, respectively. A sample path of the state of a traffic
source when a and 8 are close: to 1 is illustrated in figure 3. Notice that the burst periods tend to last a
long time; that is, given that the state-of-the-traffic source is on at time k, then it is highly probable
that the traffic source is still on at time k+0k even if Sk is large. When cell generation tends to cluster
together, we say that the generation process is positively correlated (figure 3). The correlativeness of
a traffic source has a big impact on the cell-loss behavior at a multiplexer, particularly when the

10




buffer size of the multiplexer is large, since the large buffer permits the cells to interact. Since the on-
off traffic source model proposed in the previous section can account for the correlative nature of cell
arrivals, we refer to that on-off model as the correlated burst on-off model. Under certain asymptotic
conditions, the correlated burst on-off model may be justifiably replaced by a simpler non-correlated
burst on-off model, which is described in the following section.

Figure 3. Positively correlated traffic generation.

Consider the sample paths of the states of two traffic sources, as shown in figure 4. Sample path #1
is constructed according to the correlated burst on-off model with @ = 0.9 and B =0.9. Note that

Sample path #2 (figure 4) is constructed such that, at each time slot, the traffic source is on with
probability 0.5 and off with probability 1 —0.5; that is, the traffic source turns on and off at some
time, k, with the same probability, independent of the k. We refer this on-off traffic model as the ran-
dom burst on-off model. Notice that over a long observation period, the total durations of all the on
periods of both sample paths are approximately the same; however, path #1 (figure 4) is much more
positively correlated, and therefore, would effect a much higher cell loss at a multiplexer.

SAMPLE PATH #1

LI PP P bl

SAMPLE PATH #2

l Hl | Ilﬂ HEEEEEE IHHIHH

Figure 4. Samplé paths of two types of on-off traffic sources.

Now consider the superpositions of three sample paths of the correlated burst on-off type and of
three sample paths of the random burst type, as shown in figures 5 and 6. The two superpositions
appear to be similar to each other, even though the sample paths that constituted them are quite differ-
ent. The superposition of N sample paths of the correlated burst on-off model is stochastically similar
to the superposition of sample paths of the random burst on-off model, when N is large. The correla-
tiveness of an individual traffic stream is smoothed by the superposition. Extensive simulation studies
have confirmed this interesting phenomenon.
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Figure 5. Superposition of correlated on-off sources.

|
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Figure 6. Superposition of random on-off-sources.

The random burst on-off traffic streams have simpler analytical property and, if they were used as
the traffic streams for a multiplexer, would simplify the analysis considerably; therefore, we propose
to use random burst on-off traffic sources whenever the number of traffic sources of a correlated burst

on-off traffic type is large. The modified multiplexer model with random burst on-off model is as fol-
lows:

12




* M is the number of different traffic types
* N is the number of traffic sources of the i-th type i=1, ..., M

* R; is the number of cells generated by an i-th type traffic source in a time slot during an on
period '

* Bis the maximum number of cells that may be buffered at the multiplexer -

e C s the number of cells that may be transmitted by the output link of the multiplexer per time
slot; Assume that 1 < C

We make the following assumptions:

a. An on period of a traffic source in which the i-th type lasts X; time slots, where X; is geometri-
cally distributed with parameters ¢;

b. An off period of a traffic source in which the i-th type lasts ¥; time slots, where Y, is geometri-
cally distributed with parameter 1 — ¢;

¢. The number of cells at the buffer at a time k+1 is computed as max(min(i + R - J — C, B),0),
where i is the number of cells in the buffer at time k; J is the state of the traffic sources at the
start of time k

d. > RNa;<cC

Notice that the only difference between the correlated burst on-off model and the random burst model
is that, in the correlated model, the on and off periods are determined by two parameters, ¢; and Bi,
whereas in the random burst model, the periods are determined by only one parameter, ¢;.

We define the following variables:
* By the number of cells in the buffer at the beginning of the k-th time slot
* Jix the number of the i-th type traffic sources that are on at the beginning of k-th time slot
* SMN = (o i) 10 < j; S Nji = 1,2,..., M]
o Ji= ipJa e di) € SM,N)
*  Pr(B., =j | By = i,J, = j) the probability that By, =j, given that By =i and J, = i
* Pr(B.,, = j | B, = i) the probability that By, = j, given that By =
*  Pr(B.., = j) the probability that By,; =j

We find that
Pr(Bi.; = j 1 By = i,J, = ) = £[j = max(min(i + R - j — C,B),0)}, (11)

PrBu =j1Bi=i)= > Elj=max(minG+R-j~ CB),0)Prg =y, (12
JESBIN)

13




B
Pr(B,, = j) = Z( > & = max(minG + R - j ~ C,B),0)}PrJ, = z))Pr(Bk =i). (13)

i=0 \ jESM.M

In steady state, the number of cells in the buffer, L, is independent of the time, k; J, the number of on
traffic sources of each type at a time slot, is also independent of the time, k; therefore, we have the
following fixed-point relation for Pr(L = i) for i=0, 1, ..., B:

B
PrL = j) = Z( > i = max(min(i + R - j-C,B),0)|Pr(J = j_'))Pr(L =1, (14)

i=0 \ JESMN

where

i=1

M N '
P =) = H(L-')af"(l—af)”""'- s

The Pr(L =i)’s may be obtained iteratively. We formulated the following iteration procedure to obtain
the distribution function of the variable, L. P; is used to denote Pr(L = i).

k=0

o) =~ fori=12,.8
B

@**' =0fori=12,.B

While (

p"*‘,-~p"il25for 0<i<B)
{

k =k+1;

For0<j <8

{
pick any €, such that 0 < ¢, < 1;
k-1 3 k
pri=(-e* ™ +eY| ¥ &j=max(minG +Rj~CBIOPr{J =j)|p*
i=0{ jeS(M N)

L

14




& k
S=2p";
j=0

For0<i <B

?

P
Pri =g

The procedure terminates whenever it has found a consistent set of p 5 =Pr(L=j)’s.

We conclude that there exists a unique solution to the iteration scheme, since the system is ergodic.
Note that the existence of a solution does not guarantee convergence of the iteration. Extensive com-
putational experience suggests that the procedure always converges. Each iteration step requires

M
o(B? H N;) computations; therefore, the scheme is not practical for interesting values of N; and M.

i=1
We will propose a heuristic that would considerably reduce the computational complexity of the pro-
cedure.

Once that Pr(L = i) for i=0, 1, 2, ..., B are obtained, we may derive the steady-state cell-loss proba-
bility of the multiplexer as follows:

We define the variables:

*  NL(k,j) the number of cells that are lost in a time slot, given that there are k cells buffered at the
beginning of the slot and that j is the state of the traffic sources at the beginning of the time slot

* NL(k) the number of cells that are lost in a time slot, given that there are k cells buffered at the
beginning of the slot

*  NA(k,j) the number of cells that arrive in a time slot, given that there are k cells in the beginning
of the slot and j is the state of the traffic sources at the beginning of the time slot

* NA(k) the expected number of cells that arrive in a time slot, given that there are k cells in the
beginning of the slot and j is the state of the traffic sources at the beginning of the time slot

* NA the expected number of cells that arrive in a time slot
* NL the expected number of cell losses in a time slot

* (i the steady-state cell-loss probability of the multiplexer

We find that
R j—(B-k+C)B—k+C=<R-j
LRI I 16
NL(k.j) = {O otherwise (16)
NLK) = > NLk)Prd = j), (17)

JESMM
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B
NL = Z{NL(k)Pr(L =K}, (18)

k=0

NA(k,j) = i , (19)
NAK) = 3 NAGDPI =)= > (R )P =j), (20)
[ES(M.M . _ZES(MAM
NA = > {®- )P =j). 2D
JESMN)

The cell-loss probability during a time slot is

Z{ > (3’]_’-—(B—k+C))PrQ=J_')§Q§~j_'zB—k+C)}Pr(L=k)

k=0 } jESMN

(22)

> (& ppru = p)

JESMN)

From the above expression, the cell-loss probability may be obtained in principle; however, the com-
putational complexity is exponential to the sizes of the parameters N;’s, R;’s, and M. We propose a
heuristic that will make the requisite computation feasible. :

Notice that
B
Z( > E[j = max(min( + R - j — C,B),0)|PrJ ~J)) Z >e=p, ()
i=0 !;ES(M.M i=0 jESI‘”

where

S.

i

=[j|j=max(min(i+R~j—CB)0)}

For a fixed pair (i, j), the set, S;j;» should be much smaller than S(M, N). We develop a procedure that
enumerates the set S,;; without testing each j € S(M, N).

We partition S, into S, [j = O] Sill =j < Bland S;;[B < j], where

Sli=0=[j€SMN: R j= i, 24)
Sull <j<Bl={ESMN:R j=C+jil, (25)
SAB=71={[€ESMN:R j=C+Bil. (26)

We define the following sets:

i=1

M
* Suml= k]l = {l € S(M,N) I ERiji < k},

M
* Suml=kl = {j_ € SM,N) I ZR"ii = k},

i=1

M
* Spmlz k] = {l &€ S(M,N) | ZRJ" > k},

i=1

16




We formulate a procedure that will enumerate the sets Sl = kI, Su.anl= kl and Sy, ,n[= k] without
testing each j € S(M, N).

The notations are as follows:
* S{=k=1{10=<j, <N,Rj =k},
* AXB=({(({j)li€A,jE B},

Spomi[= RN X G Mzm> 1
* Swml= K= jeglm ol =m >

{J10=<j=N, jR =k} m =1
The summation symbol Z represents the union set operation.

We define -

* Sl=sk=(l0=<j<N, Rj<1¥

D Sl RN X GY Mzm>1
* Syml=kl= jEsi=n

U10=j=N, jR <k} m=1

We introduce the notation

e Si={l0=<j=N},

S > k_'Rm . >
o Syal=k = jezs;,,( ol Z k=R X D Mz2m>1

{jl10<j=<N, jR =k} m

I
—

Using this enumeration scheme, the summation 2 of the iterative procedure may be executed
without testing each j € S(M, N). This reduces comﬁﬁﬁon considerably. In the worst case, our com-
putational procedure to calculate the exact cell-loss probability is still O(B? ﬁ N)), although its aver-
age complexity is much lower. For the case that N;’s are large, we develop tﬁe]: following efficient pro-
cedure to approximate the cell-loss probability of the multiplexer.

9. DIFFUSION APPROXIMATION

When N; is large for each i=1, 2, ..., M, diffusion approximation may be used to estimate PriJ = j).
If N; is large, Na, > 1 and Na(l — a,) > 1, then by the Laplace-DeMoivre Theorem,

‘(j'ﬂi)z
L @7

PriJi=j) ~ \/—%

where u; = Ng;and ¢? = Na(l - a)).
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We approximate the discrete random variable, J;, with a continuous variable, ;. The probability

distribution for Y, is

R
PHY, < x) = — Je 20} }dz 0<x<N,,

N; 2
where K, = —L f el 2% Jar.

Y; is approximately Gaussian.

Finally, if we define

M
Y= > RY,

i=1

M
Y is also approximately Gaussian with a mean of u = Z RNg; and a variance o

i=1

The distribution function of Y is

1 —(T‘ﬂ)z} M
PrY < x = el = Jar  0<x= RN,
K J2mo? =
. 4]

We conclude that

> P =) ~E(j=0}PHY < C— i)
154

+&{0 <j<BJPHC +j-i-1 < Y < C+ j-i) + &{B = j}(I-PHY < C + B-i)).

(28)

(29)

2 = }:RZN,a(l

(30)

€2

The Pr(LL = i)’s may be obtained from the following iteration scheme in which z P = j)is

approximated by the expression of equation (31).

18
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k=0;
) = 3}- for i=12,..B

(p**Y); =0 for i=12,..8

While (fp**““- -ptil=28for 0<i <B)

{

k=k+1;
ForO0<j <B
{
pick any ¢, such that 0 < ¢, < I;
Pi=(-ap* +e T Pri=jp*
. ZES;JJ:
1
d k
§=23p;
j=0
ForO0<i <B
{
k
P
k. —
p ] S ’
I

We also may approximate NL and NA as follows:

‘We note that

2R j-@-k+optsi=pl= YR j-E-k+P(L=))), (2

JESHN) i€,

where S, = {j € SM,N):B~k+C=R-j).
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Again, we may approximate the sum

M
> RN,

=

. N (33)
DR - Bk + OYPIU = )] ~ (T-a)f{0)dr,
465,\,’1» . .
{-(r—#)z}
where a, = B — k + Cand f(7) = ———e| 2 |.
K 2ng?
Finally,
M
NA ~ > {RNa} . (34)
i=1
The cell-loss probability is
M
> RN,
B i=1
>0 [ Gan@anr = b
k=0 (35)

g

CL~

M
Z{RiN;a[}
i=1

Using this approximation, the computation at each iteration step is reduced to the evaluation of B?

M
error function integrals. The complexity of evaluating an integral is O(Z R:N)); therefore, the overall

i=]

M
complexity of the approximation procedure is O(B> Z R:N). If one evaluates each integral using a

i=]

M

fixed number, rather than O(Z RN), of steps, the complexity of the algorithm is reduced to O(B2). We
i=1

performed several experiments using the O(B?) algorithm and found that it yielded virtually the same

M
results as the O(B? Z RN,) algorithm.

i=1

10. NUMERICAL EXAMPLES I

We conducted several simulation studies to evaluate the accuracy of exact and approximation algo-
rithms that estimate the cell-loss probability of the random-burst multiplexer model. The studies
showed good agreement. Tables 3 and 4 list the results from two of the simulation studies.

10.1 EXAMPLE #1 (EXACT ANALYSIS)

B=10
C=50
M=2
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N] =3a1=0.2R1=40
N2=]0a2=0.8R2=1

We denote P; as the steady-state probability that the buffer content of the multiplexer at the start
of a time slot is i and e as the steady-state cell-loss probability. Relative error is defined as

simulation — analysis

100 x simulation
Table 3. Exact algorithm.
Analysis Simulation Relative Error (%)

Py 0.82978 0.83290 -0.376
Py 0.00106 0.00110 ~-3.78
P> 0.00148 0.00150 -1.35
Py 0.00228 0.00220 +3.51
Py 0.00350 0.00330 +5.71
Py 0.00524 0.00500 +4.58
Py 0.00816 0.00780 +4.41
P+ 0.01230 0.01170 +4.88
Pg 0.01444 0.01440 +0.28
P 0.01150 0.01770 -1.74
Pio 0.110260 0.10850 +1.60
£ 0.1069174 0.105817096 +1.03

10.2 EXAMPLE #2 (APPROXIMATION ANALYSIS)

B =20

C =3556

M=35

N] =50R1 = 10(11 =06
NZ =50R2 =30a2 =07
N3 =50R3 =20a3 =05
Ny=50Rs =500y =0.3
N5 =50R5=60a5 =02

Table 4. Approximation algorithm.

Analysis Simulation Relative Error (%)
Py 0.9096 0.9079 +0.19
Py 0.0050 0.0060 —20.00
P4 0.0060 0.0057 +5.00
Pog -0.0794 0.0802 -1.01
€ 0.003015543 0.002997045 +0.61




11. APPLICATION: ATM EFFICIENCY

How efficient is ATM? This is one of the most frequently asked questions by ATM network
designers. The following example illustrates how the algorithms formulated in the preceding sections
would aid in addressing this question.

To simplify our discussion, we consider an ATM network consisting of only one transmission link.
The network is to support many connections, each carrying the same traffic type. We wish to deter-
mine what is the maximum link efficiency achievable such that the quality of service requirement
(QOS) of each connection supported is satisfied. The answer depends on the following parameters:

* ( the capacity of the transmission link

* B the size of the buffer

* N the number of connections being supported
e TP the traffic profile of the connections

* Q the QOS requirement of the connections
We make the following simplifying assumptions:

* The raffic profile, TP, is specified in terms of the peak traffic rate, the mean traffic rate, and
the expected burst period of a connection.

* The QOS requirement, Q, is usually defined in terms of both the maximum cell-loss rate and
the maximum end-to-end delay tolerable by the connection. To simplify the discussion, we
assume that the QOS requirement is measured only in terms of the maximum cell-loss rate
tolerable by a connection .

The transmission link is statistically shared (multiplexed) among N connections. When the total
cell-generation rate of the N connections is below the capacity of the link, C, no loss occurs; however,
when the instantaneous total traffic rate exceeds C, the excess cells will be stored in the buffer. When
the buffer is full, cells will be dropped.

We will use the following examples to illustrate how the parameters influence the answer to our
question.

For each of the two examples below, we assume the following:

The network is to support packetized voice connections. We assume that the voice encoder of a con-
nection would sample the incoming voice signal at 8000 samples/sec and that each sample is encoded
into an 8-bit unit. A cell is packed with 48 samples (bytes). We also assume that the encoder has a
silence detector and, therefore, would not generate samples during the period that the talker is silent.
We assume that the expected burst period, the interval during which the talker speaks, is 0.96 sec-
onds; the expected silence period, the interval during which the talker is silent, is 1.60 seconds.

Based on the above assumptions, the traffic profile of each voice connection is as follows:
* The peak cell rate of the connection is 167 cells/sec.
* The mean cell rate of the connection is 62 cells/sec.

* The expected burst period, the period during which the voice source would generate traffic at
its peak rate, is 0.96 seconds.
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* Itis assumed that the cell-loss requirement of each connection is 10”7 and that an overall cell-
loss rate of 108 at the transmission link suffices to effect a cell-loss rate of 107 to each connec-
tion.

11.1 EXAMPLE 1
We assume that the link can transmit up to 10 Mbits/sec (~26000 cells per second).

The buffer may store up to 100 cells.

What is the maximum efficiency achievable by the link? That is, what is the maximum number of
voice connections that can be supported by the link such that the cell-loss requirement of each con-
nection is satisfied?

We use the multiplexer model with correlated burst on-off traffic sources. According to the model,
the maximum number of connections that can be supported by the link is N = 310. The efficiency is

310 X 62 _
26000 — 0.74.

11.2 EXAMPLE 2

We retain the assumptions made in example 1, with the exception that the link capacity is only
1 Mbits/sec.

20X 62

2600 - 0.48.

The answer to the same question is N = 20. The efficiency is

Notice that the network in example 1 has a much higher statistical gain than that of example 2.
This reenforces the proven principle that networks with higher capacity transmission links can
achieve significantly higher statistical gain than low-capacity networks.

12. FUTURE WORK AND SUMMARY

In this report, a discrete-time ATM statistical multiplexer with correlated burst on-off traffic
sources is proposed. Algorithms to compute both the exact steady state and transient cell-loss proba-
bilities of the multiplexer have been formulated. Simulation studies confirm the validity of the exact
algorithms. Unfortunately, the computational requirement of the al gorithms prohibits their use in
evaluating all ATM multiplexing scenarios. As a remedy, we proposed a multiplexer model with ran-
dom burst on-off traffic sources. This model has similar cell-loss behaviors as the correlated burst
model’s when the number of traffic sources of each traffic type being multiplexed is large. For the
random burst model, we formulated an algorithm to compute the multiplexer’s cell-loss rate (transient
and steady state). The time complexity of the exact algorithm is still exponential; for this reason, we
developed an efficient approximation algorithm to compute the cell-loss rate. Extensive simulation
studies had been performed to evaluate the accuracy of the approximation algorithm, and for all
parameters of practical interest, the algorithmic results and the simulation outputs showed perfect
agreement. Finally, we illustrated the practical use of the algorithms presented in this report to deter-
mine the expected efficiency of an idealized ATM network.

The multiplexer model with correlated burst on-off traffic sources is considered to be one of the
most general multiplexer models that has ever been proposed. As far as we are able to determine, no
exact solutions (closed-form or algorithmic) to comparably general models are known. The
contribution of this paper is the development of exact, easily implementable, and numerically stable
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algorithms to compute the transient and steady-state cell-loss probabilities of a faithful ATM statisti-
cal multiplexer model. The main drawback of the solution is that it is algorithmic rather than in
closed-form. An obvious future work on this subject is to find a closed-form solution for the cell-loss
probability of this model. "
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